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ABSTRACT:  

This paper considers a transient thermoelastic problem in an isotropic homogeneous elastic plate subjected to thermal 

load within the fractional-order theory framework during analysis. The uniform-type surface temperature is on the 

plate's top face, while the bottom face is kept at zero. In order to solve the basic governing equations, an integral 

transformation was taken into consideration. The thermoelastic behaviours in a plate with an edge crack are 

investigated. With this solution, the stress intensity factors at the crack tip are numerically calculated through the 

weight function method. The results are illustrated by numerical calculations considering the material to be an 

aluminium-like medium and presented graphically. 

 

Keywords :- fractional calculus, non-Fourier heat conduction, thermal stress, integral transform approach, 

fractional calculus, integral transform. 

 

INTRODUCTION : 

In many engineering fields, Solid objects are 

widely used as structural components. Seismic, 

mechanical, hydrodynamic, blast, aerodynamic, 

and thermal loads may be applied to such 

structural elements. Engineers and scientists 

worldwide are striving to build cost-effective, 

reliable structures. Many academics have 

studied a solid object with varying boundary and 

loading circumstances using linear theory. 

Stress analysis also affects systems with 

mechanical and thermal loads.  

Science and engineering are increasingly using 

fractional-order equations to model dynamical 

systems that describe various substances' 

memory and heredity qualities. Fractional 

calculus will impact classical analysis, linear 

and nonlinear functional analysis, ordinary and 

partial differential equations, optimization 

theory, control theory, and others; see Hilfer [1], 

Sherief et al. [2], and Tenreiro [3]. The various 

fractional derivatives and integrals theory 

emerged in the second half of the 19th century. 

An excellent description is given by Podlubny [4], 

Kaczorek [5–6], Sherief and El-Latief [7–9], 

Siedlecka and Kukla [8–9], Abbas [9–10], Xiong 

and Niu [10–10], Mahakalkar et al. [11–12], 

Mittal and Kulkarni [13–13], Hussein [13], and 

others. 

Today, fractional differential equations are used 

in physics, chemistry, biology, engineering, 

finance, and other fields. Some of the application 

of fractional order derivatives includes Diffusion 

processes [14,15], mechanics of materials 

[16,17], combinatorics [18,19], inequalities [20], 

analysis [21], calculus of variations [22–27], 

signal processing [28], image processing [29], 

advection and dispersion of solutes in porous or 

fractured media [30], modelling of viscoelastic 

materials under external forces [31], 

bioengineering [32], relaxation and reaction 

kinetics of polymers [33], random walks [34], 

and so on. Thus, mathematical modelling of 

real-life problems generally yields fractional 
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differential equations and other difficulties 

involving special functions of mathematical 

physics and their extensions and generalization 

in one or more variables. Bagley and Torvik [42] 

employed fractional-order derivatives to 

represent damping forces with memory effect. 

Wang and Hu [43] observed that the fractional-

order derivative term between 0 and 2 always 

serves as a damping force in single-degree-of-

freedom fractional-order vibration systems. 

Fractional calculus has modified several 

physical process models. Fractional derivatives 

were first used by Abel [44] to solve an integral 

equation in the tautochrone problem 

formulation. Caputo [45, 46] and Caputo and 

Mainardi [47, 48] used fractional derivatives and 

found good agreement with empirical viscoelastic 

material descriptions.  

Of most recent literature, some authors have 

undertaken work on fractional derivatives in 

thermoelastic analysis, which can be 

summarised as follows: Povstenko [49] proposed 

a quasi-static uncoupled thermoelasticity theory 

based on the heat conduction equation with a 

time-fractional derivative of order α. Povstenko 

[50] developed diffusive stress theory using the 

time-fractional diffusion equation. Cauchy and 

source problems were discussed. Povstenko [51] 

examined the temperature distribution and 

thermal strains in an infinite medium with a 

spherical cavity using a quasi-static uncoupled 

theory of thermoelasticity based on the heat 

conduction equation with a time-fractional 

derivative. Youssef and Al-Lehaibi [52] used heat 

conduction in deformable bodies and the 

Riemann–Liouville fractional integral operator to 

create a new theory of fractional order 

generalized thermoelasticity. Youssef and Al-

Lehaibi [53] created a half-space-filling elastic 

material model with constant parameters. 

Fractional order generalized thermoelasticity 

theory governed the equations. Laplace 

transforms, and state space methods will be 

utilized to solve any boundary condition for the 

quiescent medium. Sherief et al. [54] established 

a fractional calculus based on coupled and 

generalized thermoelasticity theory with one 

relaxation time. Ezzat and El-Karamany [55] 

tried to apply these results to two-temperature 

thermoelasticity with a magnetic field. Youssef 

and Al-Lehaibi [56] created a cylindrical hollow 

elastic material mathematical model using 

fractional order generalized thermoelasticity 

theory. Povstenko [57] researched axisymmetric 

thermal stresses in a cylinder by utilizing the 

heat conduction equation in conjunction with 

the Caputo time-fractional derivative of order 0. 

Similarly, using a fractional-order standard 

thermoelasticity model, Youssef [58] created an 

elastic half-space with constant elastic 

parameters. A two-temperature generalized 

thermoelasticity for fractional-order heat 

conduction was established by Sur and Kanoria 

[59]. 

Youssef [60] investigated the two-temperature 

thermoelasticity theory of fractional order to a 

half-space filled with an elastic material with 

constant elastic parameters under a constant-

velocity moving heat source. Youssef et al. [61] 

created a cylindrical nano-beam mathematical 

model with constant elastic constants and 

fractional-order heat conduction. Wang et al. 

[62] investigated thermoelastic phenomena 

involving thermal inertia during macro- and 

microscale heat conduction. Bhattacharya and 

Kanoria [63] found the two-temperature 

thermal-elastic-diffusion interaction inside a 

spherical shell in fractional order generalized 

thermoelasticity using the Integral transform 

method. Zenkour and Abouelregal [64] obtained 

the thermoelastic displacement, stress, 

conductive temperature, and thermodynamic 

temperature in a spherical cavity infinite 

isotropic elastic body. Youssef [65] developed a 

fraction-order thermoelasticity theory that 

modifies Duhamel-stress-strain Neumann's 
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ratio. Bachher [66] considered a one-

dimensional problem for a homogeneous and 

isotropic thermoelastic infinite porous material 

with a reference temperature-dependent 

modulus of elasticity and thermal conductivity 

subjected to periodically varying heat sources in 

the context of fractional order generalized 

thermoelasticity with one relaxation time 

parameter.  

Santra et al. [67] introduced the three-

dimensional generalized thermoelastic coupled 

issue for a homogeneous isotropic and thermally 

conducting medium under rotation in fractional 

order generalized thermoelasticity. Yadav et al. 

[68] used generalized thermoelasticity with 

fractional order strain to examine one-

dimensional disturbances in a viscoelastic solid 

with a moving internal heat source and 

mechanical stress. Green-Naghdi 

thermoelasticity with energy dissipation is the 

issue. Bassiouny and Abouelnaga [69] studied 

the thermoelastic characteristics of a sandwich 

structure with three piezoelectric layers using 

fractional order two-temperature generalized 

thermopiezoelasticity. Gupta and Das [70] used 

Laplace transform and the eigenvalue approach 

to solve the deformation of an unbounded 

transversely isotropic material on fractional 

order generalized thermoelasticity. Sheoran and 

Kundu [71] reviewed relevant material to 

demonstrate fractional calculus's function in 

thermoelasticity. This review covers traditional 

heat conduction equation generalizations and 

fractional thermoelasticity ideas. 

Abbas [72] examined the temperature, 

displacement, and stresses caused by thermal 

shock loading on the inner surface cavity in an 

infinite medium with a cylindrical hollow within 

fractional order generalized thermoelasticity 

theory. Bachher and Sarkar [73] explored the 

magneto-thermoelastic response of a 

homogeneous isotropic two-dimensional rotating 

elastic half-space solid using generalized 

thermoelasticity based on the Caputo time-

fractional derivative. Povstenko et al. [74] 

investigated thermal stress regulation in an 

infinite cylindrical body using the time-fractional 

heat conduction equation with the Caputo 

derivative 0 2   specified the temperature 

distribution. Xiong and Niu [76] devised 

fractional-order thermoelastic diffusion for 

anisotropic and linear diffusive media [75]. The 

dynamic behaviour of a semi-infinite medium 

with one end exposed to thermal and chemical 

potential shocks was analyzed using the Laplace 

transform. Chirilă and Marin [76] worked on 

dipolar thermoelastic materials, a specific 

instance of multipolar continuum mechanics. 

Abbas [77] investigated the fractional order 

derivative affected a two-dimensional thermal 

shock problem with weak, normal, and strong 

conductivity under fractional order derivative 

using Laplace and exponential Fourier 

transforms with eigenvalues. Lata [78] explored 

the thermal response for a homogeneous 

isotropic thick circular plate in the framework of 

the two-temperature thermoelasticity theory. 

Mondal et al. [79] studied transient phenomena 

for a fibre-reinforced media with a cylindrical 

cavity under an induced magnetic field in the 

three-phase-lag model of generalized 

thermoelasticity using a new derivative of the 

Caputo–Fabrizio type in the heat transport 

equation. Mittal and Kulkarni [80] used 

fractional thermoelasticity in two-temperature 

theory and investigated the thermal fluctuations 

in the limited spherical region. Mondal [81] 

introduced a novel mathematical model to 

examine transient phenomena in a rod in the 

Lord–Shulman thermoelastic framework based 

on Eringen's nonlocal elasticity. Heat-insulated 

rod ends are fastened using Laplace transform.  

In this paper, based on time-fractional 

equations, a transient heat conduction model is 

developed to study the thermoelastic response in 

a cracked plate. The Laplace transform and the 
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finite Fourier sine transform are applied to solve 

the fractional equations. With the aid of the 

Mittag-Leffler function, the analytical solution is 

obtained. The weight function method conveys 

the stress intensity factor at the edge crack's tip. 

The effects of the temperature field, moisture 

field, stress response, and stress intensity 

factors are discussed. 

Basic assumptions and governing equations : 

For our investigation, a time-fractional 

thermoelasticity hypothesis was used. We take 

into account the thermal influence on elastic 

stresses and deformation; on the other hand, 

elastic deformation does not affect temperature. 

The mathematical formulation for the time-

fractional heat conduction equation is 

expressed: 

i. The classical Fourier's law of heat conduction 

[82] 

( , ) ( , )q x t k T x t                                            (1) 

in which ( , )q x t  is the heat flux vector 

represents heat flow per unit time per unit area 

of the isothermal surface, t  is the time, x  is the 

position of any point on solid, k is the thermal 

conductivity,   is the gradient operator, and T  

is the temperature gradient. It is a vector normal 

to the surface, respectively. Since the heat flux 

points to decreasing temperature, the minus 

sign makes the heat flow a positive quantity. 

When the heat flux is in W/m3, and the 

temperature gradient is in oC/m, the thermal 

conductivity has W/(moC). The main drawback 

of the traditional Fourier's law is that it results 

in a parabolic equation for the temperature, 

which causes thermal waves to propagate at an 

infinite rate and is, therefore, unsuitable in its 

current form. 

ii. Maxwell-Cattaneo introduced single-phase-lag 

to evade the discrepancy between the 

mathematical model [83,84] and the 

experimental observations [85], and this 

extension turns the parabolic into a hyperbolic 

equation as 

0

( , )
( , ) ( , )

q x t
q x t k T x t

t



   


                  (2) 

As a limiting case 
0 0  , one recovers the 

classical Fourier's law with an infinitely fast 

propagation. Here the flux relaxes with some 

given characteristic time constant 
0 , the heat 

flux's phase lag or so-called relaxation time. 

Consequently, the propagation velocity is finite.  

iii. Recently, a kind of generalization of Eq. (2) 

consisting of replacing the classical integer-order 

derivative with fractional order can be referred to 

in literature [86] and the reference therein. 

0

( , )
( , ) ( , )

q x t
q x t k T x t

t







   


                        (3) 

with the solution [87] as 

1

,

0 00

( )
( , ) ( ) ( , )

t
k t

q x t t E T x d




 


  

 

  
     

 


    (4) 

in which the fractional Caputo derivative of 

order   with a lower limit zero 

1

0

0

1 ( )
( ) , 1

( ) ( )
( )

( )
, ,

m
t

m

m
C

t
m

m

f
t d m m

f t m
D f t

t f t
m m N

t









  

 



  
   

   
  

 
 

 


         

(5) 

whereas ( )f t  is a Lebesgue integrable function 

and the Riemann-Liouville fractional derivative 

is taken as 

1

0

1
( ) ( ) ( ) , 1

( )

m
t

m

RL m
D f t t f d m m

mt

    


  
     

   


                 

(6) 

wherein Eq. (3), without losing the generality 

(1 )   appearing in the Taylor series is merged 

in 
0  terms,   is the gamma function,   is 

introduced to keep the dimension in order and 

/ t    is the fractional time derivative based on 

Caputo fractional definition [4].  

By combining Eq. (3) with the continuity 

equation, which is given as 

( , )
( , )v

T x t
C q x t

t



  


                                      (7) 

leads to the hyperbolic heat conduction equation 

01 ( , ) ( , )T x t T x t
t t




 

  
   

  

                        (8) 
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in which / vk C   is the thermal diffusivity 

coefficient,   is the density, vC  is the calorific 

value and 
2    is the gradient 

operator, respectively.  

For the limiting case:  

(i) Taking 
0 0, 0   , Eq. (8) reduces to 

classical Fourier heat conduction,   

(ii) Taking (0,1)  , Eq. (8) is identified as a 

fractional generalization of the Cattaneo 

approach, 

Formulation of the Problem : 

Time fractional heat conduction equation in 

the single-phase-lag model : 

For our investigation, we consider the transient 

response of the fractional heat conduction in a 

plate of thickness h  that has a crack along one 

of its edges. It is decided to use the Cartesian 

coordinate system O xyz , with the plate 

having an infinite extent in the y and z 

directions but having a finite extent in the x 

direction (i.e., 0 x h  ).  

As seen in Figure 1, the edge fracture situated in 

the plane 0y   may be found at the 

coordinates 0 ,x c y       and is 

perpendicular to the plate's free surface. 0T  

denotes the temperature reference at the 

beginning of the process. Equation (8) can be 

rewritten in the dimensionless form as a time-

fractional heat conduction equation in the 

single-phase-lag model with its corresponding 

boundary conditions after dropping primes for 

convenience.  

2

0 2
1 ( )e

t t x




 

    
   

   

                              (9) 

subjected to conditions 

( ,0)
( ,0) 0, 0

x
x

t


  


                                   (10) 

1 2(0, ) ( ), ( , ) ( ),t H t h t H t                                (11) 

where 1  and 2  are prescribed heat 

constants, e  is the strain dilatation along the x  

direction, ( )H t  is the Heaviside unit step 

function and the following non-dimensional 

variables are used  

1 ,x c x  1 ,y c y  1 ,u c u  2

1 ,t c t 
2

0 1 0 ,c   1/ / ,vC k     

2

1/ ,ij ij c    2

1 ( 2 ) / ,c    

2

0 / ( 2 ) ,T k       

2

0 1( ) / ,T T c    (2 3 )t      

with t  is the coefficients of linear thermal 

expansion of the material,   and   are the 

Lame constants, 0T  is the reference 

temperature, respectively. 

The thermal stress function : 

To calculate the thermoelastic response of the 

plate with an edge fracture, we will assume that 

both of the plate's surfaces 0x   and x h , do 

not experience any traction as  

(0, ) 0, ( , ) 0, (0, ) 0,

( , ) 0, (0, ) 0, ( , ) 0.

xx xx xy

xy xz xz

t h t t

h t t h t

  

  

  

  
                       (12) 

Now, suppose the temperature ( , )x t  is 

the excess of temperature over 
0 , the absolute 

temperature of the plate in a state of zero stress 

and strain; then, the thermal stress 

( , )yy x t   is connected with u  and   by 

the relation  

e                                                (13) 

where quantity 0 / ( 2 ),T     E  denotes 

Young's modulus, t  the linear expansion 

coefficient, and yy  is the strain component 

which can be obtained using compatibility 

condition 
2 2/ 0yy x    that gives 

1 2( )yye x C x C                                  (14) 
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where 1C    and 2C  are coefficients to be 

determined from the boundary conditions of the 

plate structure. Thus, for the thermoelastic 

medium in plane strain, using generalized 

Hooke's law, the thermal stress in the absence of 

crack, as shown in equation (13), can be 

rewritten as 

1 2C x C                                          (15) 

The Solution to the Problem 

Following Liang et al. [88], if 0  , [ ] 1n   , 

and functions ( ),f t ( ),f t ( ),f t …
( 1) ( )nf t

 

are continuous in [0, )  and of exponential 

order, while 0 ( )CD f t
 with order    is 

piecewise continuous on  [0, ) , then Laplace 

transform of Caputo fractional derivative of 

( ),f t  is defined as follows 

1
1 ( )

0

0

[ ( )] [ ( )] (0),
n

C k k

k

L D f t s L f t s f  


 



               (16) 

In view of the above theorem, assuming 

2

2
( ,0) ( ,0) ( ,0) ... 0.f x f x f x

t t

 
   
 

       (17) 

Using Eqs. (13) and (14), applying the Laplace 

transforms to the Eqs. (9) and (11), bearing Eq. 

(15) in mind, one obtains 

2
1

0 1 2 2
( )[ ( )]s s C x C

x

   
   


                    (18) 

subjected to conditions 

1 2(0, ) / , ( , ) / ,s s h s s                   (19) 

where s  is the parameter and f  stands for the 

Laplace transform of f, respectively. 

To obtain the solution to Eq. (18), we recall the 

following property of the finite Fourier sine 

transform in the domain 0 x h   

2
2

2

( , )
( , ) [ (0, ) ( 1) ( , )]n

n n n

f x s
F f s f s f h s

x
  

 
     

 

                      (20) 

where f  stand for the finite Fourier transform of 

,f  and / ,n n h  1, 2,...k   respectively.  

Performing the finite Fourier sine transform of 

both sides of Eq. (18) subject to conditions (19), 

one obtains   

2

12

2
( , )

( )

n
n

n n

s
s

 


 

  
 


                               (21) 

where 
12 1 2( 1) ,n      1

0s s     and 

1

1 2( 1) [1 ( 1) ]n nC h C     .  

Then we perform the inverse finite Fourier sine 

transform to both sides of Eq. (21) as 

2

12

2
1

( , ) 2 sin( )
( )

n
n

n n n

x s x
s

 


 





   
   

  
                  (22) 

Using Eqs. (16) and (17), applying the Laplace 

transforms to the dimensionless governing Eq. 

(15), the transformed equations are given as 

1 2 ( , )C x C x s                                (23) 

If the plate is only subjected to thermal shock 

without constraint along its boundariers, then 

the unknown constants 1C  and 2C  can be 

solved from the following conditions 

0 0

( , ) 0, ( , ) 0,
h h

yy yyx s dx x s xdx                    (24) 

which may be used to determine two constants 

1C  and 2C . Thus, Eqs. (22)−(24) describe the 

analytical solutions of thermal parameters 

and  , respectively, in the Laplace domain. 

The thermal stress intensity factor : 

Following [89,90], the crack problem considered, 

to ensure crack faces to be free we require that 

an equal and opposite axial stress will be 

superposed. Using the weight function method, 

the stress intensity factor (SIF) IK  near the 

edge crack tip can be calculated by the following 

integral [90]:  

1

3/2 2
0

( , ) ( , )2

(1 ) 1 ( / )

c
yy

I

x s F x ch
K dx

c c x c






 


               (25) 

Here, 1 ,c c c   1( , )F x c  is a non-dimensional 

weight function [89] is given as 

2 3

1 1 2 3 4( , ) ( ) ( ) ( ) ( ) ,
x x x

F x c f c f c f c f c
c c c

     
        

     
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where  

5 2 2 2

1 2

2 3 1/2 5 2 2

3

2 3 1/2 5 2 2

4

( ) 0.46 3.06 0.84(1 ) 0.66 (1 ) , ( ) 3.52 ,

( ) 6.17 28.22 34.54 14.39 (1 ) 5.88(1 ) 2.64 (1 ) ,

( ) 6.63 25.16 31.04 14.41 2(1 ) 5.04(1 ) 1.98 (1 ) .

f c c c c c f c c

f c c c c c c c c

f c c c c c c c c

       

         

          

 

It is noted that the above integral computation is 

effective for a positive (tensile) stress since a 

negative (compressive) stress does not give rise 

to crack opening but closing. Of course, from 

another point of view, a negative stress intensity 

factor may be understood as a shield effect to 

prevent the crack from advancing.      

The numerical inversion of the Laplace 

transforms : 

Consider the Gaver-Stehfest algorithm [91-93], 

which aims to approximate ( )f t  by a sequence 

of function, can be given as 

1

1
( ) ( ) In(2) In(2) ,

L

n n
n

n
f t f t a F

t t



   
     

   

 1,n  0,t                             

(26) 

where [.]F  is the Laplace transform of ( )f t .  

The coefficients an  depend only on the number 

of expansion terms n , defined as 

/2min( , /2) (2 )!/2( 1) ,
( / 2 )! !( 1)!( )!(2 )![( 1)/2]

Ln L k kn Lan
L k k k n k k nk n

  
    

1,n   1 L n       (27) 

The convergence of Gaver-Stehfest algorithm for 

numerical inversion of the Laplace transform 

was developed by Kuznetsov [94]. It is well 

proved that the approximations ( )f tn  converge 

to ( )f t , if f is continuous at t and of bounded 

variation in a neighbourhood of t. It has been 

mathematically demonstrated that if a 

significant number of terms from the sequence 

are considered, the series will converge. Because 

the thickness of the plate is rather thin, the 

solution that has been presented here will 

definitely converge. To summarise, our 

convergence claim states that if we consider a 

sufficient number of different terms, the 

solutions to the series will eventually converge 

on the precise answer, and the margin of error 

will tend to be zero across the board. To put it 

another way, if we make the phase lower and 

smaller, the convergence rate will be 

significantly increased. To meet the convergence 

of the infinite series in the solution and the 

conditions to be imposed with the functions  at 

an arbitrary point, we must roughly replace 

 in the temperature and its stresses by 

.20  

CONCLUSION : 

The proposed closed-form for a transient 

thermoelastic problem in an isotropic 

homogeneous elastic plate subjected to thermal 

load within the fractional-order theory 

framework is considered during analysis. In 

order to solve the basic governing equations, an 

integral transformation technique was taken into 

consideration. The thermoelastic behaviours in a 

plate with an edge crack are investigated.  

NOMENCLATURE : 

λ,μ    Lamè constants 

t       Time 

ρ       Density 

Cv     Specific heat at constant strain 

T       Temperature 

0T      Reference temperature 

αt      Coefficient of linear thermal expansion 

σij     Components of stress tensor 

ui      Components of displacement vector 

e       Dilatation 

λ       Thermal conductivity 

κ       Diffusivity 

τ0      Relaxation times 

ε       Thermal coupling parameter 
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Figure 1: infinite plate with a crack at its edge subject to uniform thermal loading 

                                 

  

 

 

 

 

 


